Strong Convergence Rate for Two-Time-Scale Jump-Diffusion Stochastic Differential Systems

نویسنده

  • Dror Givon
چکیده

We study a two-time-scale system of jump-diffusion stochastic differential equations. The main goal is to study the convergence rate of the slow components to the effective dynamics. The convergence established here is in the strong sense, i.e., uniformly in time. For the ergodicity assumptions, we use the existence of a Lyapunov function to control the return times. This assumption is weaker than the one-sided Lipschitz condition, frequently used for deriving rates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong convergence rate of principle of averaging for jump-diffusion processes

Abstract We study jump-diffusion processes with two well-separated time scales. It is proved that the rate of strong convergence to the averaged effective dynamics is of order O(ε1/2), where ε 1 is the parameter measuring the disparity of the time scales in the system. The convergence rate is shown to be optimal through examples. The result sheds light on the designing of efficient numerical me...

متن کامل

Almost sure exponential stability of stochastic reaction diffusion systems with Markovian jump

The stochastic reaction diffusion systems may suffer sudden shocks‎, ‎in order to explain this phenomena‎, ‎we use Markovian jumps to model stochastic reaction diffusion systems‎. ‎In this paper‎, ‎we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps‎. ‎Under some reasonable conditions‎, ‎we show that the trivial solution of stocha...

متن کامل

Stabilized Numerical Methods for Stochastic Differential Equations driven by Diffusion and Jump-Diffusion Processes

Stochastic models that account for sudden, unforeseeable events play a crucial role in many different fields such as finance, economics, biology, chemistry, physics and so on. That kind of stochastic problems can be modeled by stochastic differential equations driven by jumpdiffusion processes. In addition, there are situations, where a stochastic model is based on stochastic differential equat...

متن کامل

Convergence and Stability of Implicit Methods for Jump-diffusion Systems

Abstract. A class of implicit methods is introduced for Ito stochastic differential equations with Poisson-driven jumps. A convergence proof shows that these implicit methods share the same strong finite-time convergence rate as the explicit Euler–Maruyama scheme. A mean-square linear stability analysis shows that implicitness offers benefits, and a natural analogue of mean-square A-stability i...

متن کامل

Strong Convergence Rates for Backward Euler on a Class of Nonlinear Jump-Diffusion Problems∗

We generalise the current theory of optimal strong convergence rates for implicit Euler-based methods by allowing for Poisson-driven jumps in a stochastic differential equation (SDE). More precisely, we show that under one-sided Lipschitz and polynomial growth conditions on the drift coefficient and global Lipschitz conditions on the diffusion and jump coefficients, three variants of backward E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2007